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SUMMARY

Computation of the acoustic disturbances generated by unsteady low-speed �ow �elds including vortices
and shear layers is considered. The equations governing the generation and propagation of acoustic
�uctuations are derived from a two-step acoustic=viscous splitting technique. An optimized high order
dispersion–relation–preserving scheme is used for the solution of the acoustic �eld. The acoustic �eld
generated by a corotating vortex pair is obtained using the above technique. The computed sound �eld is
compared with the existing analytic solution. Results are in good agreement with the analytic solution
except near the centre of the vortices where the acoustic pressure becomes singular. The governing
equations for acoustic �uctuations are then linearized and solved for the same model problem. The
di�erence between non-linear and linearized solutions falls below the numerical error of the simulation.
However, a considerable saving in CPU time usage is achieved in solving the linearized equations. The
results indicate that the linearized acoustic=viscous splitting technique for the simulation of acoustic
�uctuations generation and propagation by low Mach number �ow �elds seems to be very promising for
three-dimensional problems involving complex geometries. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The generation and propagation of acoustic waves by low-speed �ows is of interest for
many applications, such as automobile and wind turbine noise. The compressible Navier–
Stokes equations describe sound generation and propagation by a general �ow �eld. However,
direct numerical simulation of the full compressible equations is prohibitively expensive for
low Mach number �ows. In fact, direct numerical simulations of the �ow induced acous-
tic disturbances have been restricted to simple model problems to date [1–3]. In an attempt
to overcome the di�culties in predicting sound generation and propagation by low Mach
number �ows, Hardin and Pope [4] proposed an acoustic=viscous splitting technique. In this
two-part calculation the viscous �ow is �rst handled by calculating time-dependent incom-
pressible �ow, and then the acoustic �eld is obtained from inviscid equations describing the
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di�erences from the incompressible �ow. The same authors used this technique together with
a MacCormack predictor–corrector scheme to predict the sound generated by viscous �ow
over a two-dimensional cavity [5]. Lee and Koo [6] followed this approach to simulate the
acoustic �eld generated by a co-rotating vortex pair. This model problem was also utilized by
Ekaterinaris [7] to verify a high order upwind-biased scheme proposed for solving the gov-
erning equations in terms of the primitive variables. He later proposed a high order control
volume scheme for solving the conservative form of the governing equations [8].
On the other hand, the shortcomings of the classical computational �uid dynamics di�erenc-

ing schemes in aeroacoustics simulations are well documented [9; 10]. To accurately capture
the sound wave generation and propagation in a complex �ow �eld higher-order di�erencing
schemes are required. The dispersion–relation–preserving (DRP) schemes have shown their
e�ectiveness in accurately predicting sound wave propagation [10]. In the present study an
optimized high order (DRP) scheme together with the acoustic=viscous splitting technique of
Hardin and Pope is applied to predict sound generation and propagation by a pair of co-
rotating point vortices. This study helps to assess the DRP schemes capabilities in predicting
acoustic wave generation. The computed results are compared with existing analytic solutions.
The linearized form of the Hardin–Pope equations is also derived and used to solve this

problem. The accuracy of the linearized solution and the resulting savings in computational
e�orts are discussed.

2. GOVERNING EQUATIONS

There are no truly incompressible �uids in the nature. However, the incompressibility assump-
tion results in a constant density �ow �eld at the limit of low Mach number �ows. Fast and
e�cient numerical techniques have been developed to solve the incompressible Navier–Stokes
equations. Even though the pressure �eld can vary in time and space, but no mechanism for
sound generation is included in the above formulation. One can always consider the com-
pressible Navier–Stokes equations at the limit of low Mach numbers to account for pressure
�uctuations and sound generation. However, the present numerical techniques for the solution
of compressible �ows become very ine�cient as the Mach number approaches zero.
To overcome this problem Hardin and Pope [4] suggested a rather simple and practical

acoustic=viscous splitting technique that enables one to solve the time-dependent incompress-
ible Navier–Stokes equations for the velocity and pressure �elds. Then, using the time averaged
pressure, they introduced a hydrodynamic density �uctuation correction term that is the source
of sound generation in the inviscid �uctuating acoustic equations. The variable density cor-
rection accounts for density variations safely neglected in computing incompressible pressure
�eld. These density �uctuations, which take place in the ‘incompressible’ �ow, can be shown
to be quite large compared to acoustic density �uctuations [4]. Details of this technique are
explained below.
The Hardin–Pope splitting method introduces the following �ow variables decomposition

u=U + u′; v=V + v′; p=P+p′, and �=�0 + �1 + �′. Here, capital letters indicate incom-
pressible viscous �ow variables and primed variables indicate their inviscid acoustic �uctuating
components. The ambient hydrostatic density is denoted by �0 and the hydrodynamic density
�uctuation correction �1 =�1(x; t) is de�ned as

�1 = (P − �P)=c20 (1)
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where c0 = (�p0=�0)1=2 is the speed of sound in the far-�eld ambient �uid and the time aver-
aged pressure for stationary �ow �elds is de�ned as

�P= lim
T→∞

1
T

∫ T

0
P dt

The incompressible �ow �eld variables U , V , and P are known through the numerical solution
of the time-dependent incompressible Navier–Stokes equations or from an analytic solution.
The equations governing the acoustic �eld induced by low speed �ows are obtained by

utilizing the above decomposition in the compressible mass and momentum equations and
then subtracting the incompressible Navier–Stokes equations from them, see Reference [4] for
complete details. The acoustic �eld equations are given in a compact form as

@q̂
@t
+
@f̂
@x
+
@ĝ
@y
= ĥ (2)

where

q̂=




�′

�u′ + �′U

�v′ + �′V


 ; f̂=




�u′ + �′U

�(2Uu′ + u′2) + �′U 2 + p′

�(Vu′ +Uv′ + u′v′) + �′UV


 ;

ĝ=




�v′ + �′V

�(Vu′ +Uv′ + u′v′) + �′UV

�(2Vu′ + v′2) + �′V 2 + p′




ĥ=−




@=@t(�1) + @=@x(�1U ) + @=@y(�1V )

@=@t(�1U ) + @=@x(�1U 2) + @=@y(�1UV )

@=@t(�1V ) + @=@x(�1UV ) + @=@y(�1V 2)




In these equations, the acoustic variables are the acoustic density �′ normalized by the free
stream density �0, the acoustic velocities u′ and v′ normalized by the far-�eld speed of sound
c0, and the acoustic pressure p′ normalized by �0c20. The �uctuating energy equation can be
used to obtain a relation for the acoustic pressure in terms of density; however since the
acoustic �eld is considered to be isentropic, then the pressure and density are related through
an isentropic relation, p=pref = (�=�ref )r , and the use of the �uctuating energy equation is
redundant. The non-dimensional form of this relation determines the acoustic pressure as

p′=(��=�)− P (3)

These equations can be rewritten in a primitive variable form as follows:

@q
@t
+ A

@q
@x
+ B

@q
@y
= S (4)

where A and B are the coe�cient matrices, S is the source term matrix and q is the primitive
variable vector of the acoustic �uctuations q=(�′; u′; v′)T. The coe�cient and the source term
matrices for a Cartesian co-ordinate system are given in Appendix A.
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3. LINEARIZED ACOUSTIC FIELD EQUATIONS

The acoustic �eld equations are non-linear and this enables them to capture such non-linear
phenomena as non-linear wave interactions and wave steepening. However this non-linearity
makes their numerical solution very time consuming, especially for complex three-dimensional
geometries. If a reasonable linearization of the equations proves feasible, simpler numerical
schemes with less stringent computational requirements can be designed for their solution.
Furthermore, extension of these schemes to three-dimensional problems involving complex
geometries can be realized on small workstations and leading edge personal computers. The
idea of a linearization is strongly supported by the fact that non-linearity e�ects are very
mild in the case of the generation and propagation of the acoustic waves by low Mach
number �ows. The non-linear phenomena such as wave steepening are absent or very weak if
the �ow region is not con�ned and there are no vibrating walls. In many low Mach number
�ows unsteady vortex dynamic and=or shear layers are the main source of noise. The acoustic
source in these �ows is similar in nature to a quadrupole source and therefore it is reasonable
to linearize the acoustic �eld equations.
In the present study the spinning vortex pair with its quadrupole acoustic source is used

to evaluate non-linearity e�ects in an uncon�ned region. The results of this study can be
extended to low Mach number external �ows containing vortices and shear layers in absence
of vibrating walls.
It is well known that acoustic �uctuations are much smaller than their incompressible �ow

�eld counterparts:

v′i � Vi

�′� �0 + �1
(5)

Also pressure changes due to minor density changes can be neglected in evaluating the speed
of sound and a uniform speed of sound can be considered throughout the computational
domain. Therefore, the following approximate values may be used to linearize acoustic �eld
equations:

vi ≈ Vi
�≈ �0 + �1 (6)

c≈ c0

The linearized primitive variable form of the acoustic �eld equations, given by Equation (4),
may be rewritten as

@�′

@t
+ V · ∇�′ + �0∇ · v′ =−

(
@�1
@t
+ v · ∇�1

)

@v′

@t
+ V · ∇v′ + ∇p′

�0
=−

[
��
@V
@t
+ ( ��V + v′) · ∇V

]
(7)

@p′

@t
+ V · ∇p′ + �0c20∇ · v′ =0
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The numerical solutions of the linearized and non-linear acoustic �eld equations are dis-
cussed in the following section.

4. NUMERICAL CONSIDERATIONS

The acoustic �eld equations, proposed by Hardin and Pope, have been solved numerically
using classical CFD schemes in References [5–8]. In the present study optimized high order
DRP schemes are utilized.
Time marching is carried out by an explicit fourth-order accurate DRP scheme [9].

In comparison with the usual fourth-order Runge–Kutta schemes the fourth-order DRP scheme
requires more space to store residual terms at four di�erent time steps. However, one-
dimensional case studies indicate that the usual fourth-order Runge–Kutta schemes require
more computing time due to computation of four di�erent residual terms at every time
step [11].
Low order spatial di�erencing adds too much numerical error to the di�erence equations and

cannot be used for aeroacoustic predictions with a reasonable number of points per wavelength
of the shortest wave desired to be resolved. High bandwidth schemes are required for an
accurate solution of the aeroacoustic problems [10]. The bandwidth of a discrete operator
refers to the range of wave numbers resolved by the operator. One strategy to create operators
that are useful over a larger bandwidth is to reduce the order property below the maximum
order possible for a given stencil. The reduced order provides additional degrees of freedom
that can be used to optimize the operator. The stencil and, thus, the computational e�ort
remains identical to the original operator.
Suppose that an M + N + 1 point �nite di�erence stencil is used to approximate the �rst

derivative @f=@x at the point x of a grid with spacing �x, i.e.

@f
@x
(x)≈ 1

�x

N∑
j=−M

ajf(x + j�x) (8)

The e�ective numerical wave number of the �nite di�erence scheme can be calculated by
the application of the Fourier transformation on both sides of Equation (8), as

��=
−i
�x

N∑
j=−M

ajeij��x (9)

In a DRP scheme, coe�cients aj are determined so that Equation (9) is accurate to the
order of �x(M+N−2) through Taylor series expansion, and then the remaining unknowns are
chosen in a way that �� is a close approximation of � over a wide band of wave numbers.
The numerical values of aj are tabulated in Reference [10].
In this study, fourth-order accurate optimized DRP schemes are used for space dicretization

of the acoustic �eld equations. Spatial di�erencing can be achieved by upwind or central
di�erencing schemes. Upwinding is based on the eigenvalue sign of the coe�cient matrices.
The coe�cient matrices A and B are diagonalized as follows:

A±=XA�±
A X

−1
A ; B±=XB�±

B X
−1
B (10)
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where �A and �B are diagonal matrices containing the eigenvalues of A and B, XA and XB
are the left eigenvector, and X−1

A and X−1
B are the right eigenvector matrices of A and B,

respectively. The residual term of the time marching

@q
@t
=R= S − (Aqx + Bqy) (11)

is computed as

R= S − [(A+q−x + A−q+x ) + (B
+q−y + B

−q+y )] (12)

where q+ and q− are calculated using forward and backward upwind di�erence operators,
respectively.
Application of high order central di�erencing schemes to linearized equations can reduce

the computational e�ort by eliminating the requirement of computing the eigenvalues and
corresponding matrices. Equation (11) can be used directly to evaluate the residual terms.
The disadvantage of the central di�erence schemes is their inherent dependency in time and
space discritization. Selective arti�cial damping terms must be added to obtain a stable scheme.
An appropriate damping term is given by [10]

− �a
�x2i

3∑
j=−3

dje−ij��xi (13)

where [�a=�x2i ] is the damping coe�cient and �xi is the grid spacing in ith direction.
Upwind and central di�erencing schemes are applied to the solution of the non-linear acous-

tic �eld equations, however, due to the simplicity of the linearized acoustic �eld equations
only the central di�erencing scheme is used for their solution. Results are discussed after a
brief review of the boundary conditions.

5. BOUNDARY CONDITIONS

A computational domain is inevitably �nite in size. Therefore, appropriate boundary con-
ditions are required at the domain’s computational boundaries. These boundary conditions
allow the acoustic and �ow disturbances to leave the computational domain with minimal
re�ection. Acoustic radiation boundary conditions of Tam and Webb [9] are applied at the
far-�eld boundaries and the following set of di�erential equations are used to �nd the acoustic
�uctuations at boundaries:

1
Ṽ (r; �)

(
@
@t
+
@
@r
+
1
2r

)
qb = 0 (14)

where qb = (�′+�1; u′; v′)T, Ṽ (r; �)=U cos �+V sin � and (r; �) are polar co-ordinates centred
near the middle of the computation domain. Equation (14) is solved with an explicit scheme.
The time derivative is discretized using a �rst-order time accurate operator.
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6. RESULTS AND DISCUSSION

In order to assess the e�ect of the non-linear terms in the acoustic �eld equations and to
evaluate the performance of the proposed high order schemes, the sound �eld generated by
a co-rotating vortex pair is investigated. This model problem is chosen because there exist
analytical solutions for the �ow and the acoustic �eld generated by a pair of point vortices
[12]. The existence of an exact �ow �eld solution facilitates the evaluation of the numerical
schemes utilized for the solution of the acoustic �eld equations without su�ering any possible
uncertainties imposed by numerical solution of the incompressible �ow �eld. Others have used
this same problem to assess the accuracy of the numerical schemes proposed for solving the
governing equations in both original and primitive variable forms [6–8].
An acoustic �eld is generated by the inherent unsteadiness of the incompressible �ow �eld

of a spinning vortex pair. The two-point vortices, separated by a distance 2r0, rotate around
each other along a circular path of radius r0 with a circulation intensity of �, a period of
T =8�2r20 =�, a rotating speed of !=�=4�r

2
0 , and a rotating Mach number of Mr =�=4� r0c0,

see Figure 1.
M	uller and Obermeier [12] used the method of matched asymptotic expansions for theoret-

ical analysis of the spinning vortices. In their analysis, the incompressible �ow is considered
as the inner solution and the perturbed compressible �ow �eld as the outer solution. These so-
lutions are matched in an intermediate region in such a way as to give an asymptotically valid
solution. Following this analysis, the hydrodynamic velocity and pressure and the acoustic

y/
r 0

x/r0

0

0

θ

r

r 0

Γ

Γ

(x,y)

Figure 1. Schematic con�guration of corotating vortices.
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Figure 2. 3-D view of analytic solution for acoustic pressure.

pressure �uctuations are obtained as

U − iV = �
i�

z
z2 − b2

P= P0 + �0
�!
�

R

(
b2

z2 − b2
)
− 1
2
�0(U 2 + V 2) (15)

p′ =
�0�4

64�3r40 c
2
0
[J2(kr) cos(2(!t − �))− Y2(kr) sin(2(!t − �))]

where z= x + iy= rei�, b= r0ei�, R denotes the real part operator, k=2!=c0, and J2(z) and
Y2(z) are the second-order Bessel functions of the �rst and second kind, respectively. Figure 2
shows a 3-D graphical view of the acoustic pressure �uctuations when �=2�=10 and Mr = 0:1.
At the mid-distance between the vortices, the acoustic pressure becomes singular and very

close to the vortex centres the hydrodynamic velocity and pressure have large gradients. To
avoid numerical singularity at the centre of the vortices a vortex core model is required [6].
The Scully [13] vortex model as described below is used in this study. In this model the
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Computation Analytic

Figure 3. Comparison of the analytic and computed acoustic pressure �elds for �=2�=10 and Mr = 0:1.

tangential velocity component is approximated as

V�=
�r

2�(r2c + r2)
(16)

where V� is the tangential velocity, r is the radial distance from the vortex centre, and rc is
the core radius.
A square computational domain centred at the origin of the co-ordinate system with sides

equal to 300r0 and uniform square grids is considered. Zero initial values are used for all
acoustic �uctuations. The computations are continued until temporal periodicity is obtained.
Based on the exact solution given by Equation (15) the distance between the vortex pair, r0,

and the circulation intensity, �, for a given value of speed of sound are the only parameters
determining the frequency, amplitude and spatial attenuation of the solution. In another word
the circulation intensity and the rotating Mach number determine the grid and time step
resolutions for an accurate and stable solution. However, the overall dynamics of the problem
is not a�ected by changing any of these parameters. Therefore, solutions are obtained and
presented only for �=2�=10 and Mr = 0:1 to avoid an extensive computational e�ort.
The non-linear acoustic �eld equations are solved by the upwind-biased scheme and the

results are compared with the exact solution. Figure 3 shows a qualitative agreement between
numerical and analytical acoustic pressure contours.
Figure 4 shows a more quantitative comparison between numerical and analytical solutions.

The acoustic pressure distribution along horizontal axis is extracted and depicted in this �gure.
Although relatively coarse grid with �x=r0 = 4 and moderate time step with �t=0:01 are used
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Figure 4. Comparison of the analytical and computed results along x-axis for �=2�=10 and Mr = 0:1
with non-linear acoustic �eld equations.

in this simulation, dissipation and dispersion errors are bounded to reasonable amounts except
near the centre of the vortices where acoustic pressure becomes singular. This reveals the
ability of the acoustic=viscous splitting technique combined with the high order DRP scheme
in predicting the sound generation and propagation by quadruple sources.
The linearized acoustic �eld equations can also be solved using a high order central DRP

scheme. To achieve a stable solution with the central di�erence schemes an appropriate damp-
ing factor causing the least possible arti�cial damping is required. An appropriate damping
factor is obtained by simulation of the linearized equations and comparison of the results with
the exact analytical solution. To be consistent the same damping factor is used for non-linear
as well as linearized simulations. To this end, a high order central DRP scheme with di�er-
ent damping factors ranging from 0.125 to 0.5 is used to solve the linearized acoustic �eld
equations. Figure 5 shows the extracted values of the computed results along the horizontal
axis and compares them with the analytical results. Based on these results a damping factor
of 0.25 is chosen for the rest of the computations.
To investigate e�ects of linearizing the acoustic �eld equations, non-linear simulation re-

sults are compared with linearized approximations in Figure 6. Both upwind and central DRP
schemes for non-linear simulations and the central DRP scheme for linear simulations are
used in this study. It shows that non-linear and linearized results are nearly indistinguishable
and their di�erence is even less than the di�erence between non-linear results and analytical
solution. The main advantage of the linearization proposed in this study lies in a considerable
simpli�cation of the computational procedure and consequently results in a valuable time sav-
ing. Table I compares total CPU time needed for 100 000 iterations of the linearized and non-
linear simulations. All of the computations were carried out on a 633 MHz Intel Pentium III
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Figure 5. Comparison of the analytical and computed results along x-axis for �=2�=10 and Mr = 0:1
with di�erent damping factors using linearized acoustic �eld equations.
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Figure 6. Comparison of the analytical and computed results along x-axis for �=2�=10 and Mr = 0:1
with linearized and non-linear equations.

with 256 MB of RAM. It is shown that non-linear calculations take about 160% more time
than the linearized calculations for the same number of iterations.
A grid resolution study is also carried out. In Figure 7 extracted values of the analytical

and linearized solutions along the horizontal axis obtained with two di�erent grid spacings are
compared. Central DRP schemes with damping terms were used in both simulations. Good
agreement is observed except near the centre of the vortices where the acoustic pressure
becomes singular. It is shown that using a coarse grid spacing of �x=r0 = 4, with about 11
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Table I. CPU time comparsion of non-linear and linearized schemes (100 000 iterations).

Case Solver �x=r0 �y=r0 �t Damping factor CPU time (s)

1 Non-linear 4 4 0.01 0.25 13 078
2 Linearized 4 4 0.01 0.25 4988
3 Non-linear 8 8 0.01 0.25 3272
4 Linearized 8 8 0.01 0.25 1248

x/r0

p
/ρ

0
c
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-5E-05
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0
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5E-05

Analytical
Central ∆ x=3, ∆ t=0.01, d=0.250
Central ∆ x=4, ∆ t=0.01, d=0.250

Figure 7. Comparison of the analytical and computed results along x-axis for �=2�=10 and Mr = 0:1
with di�erent mesh spacings using linearized equations.

points per wavelength (PPW), provides as good a result as those obtained for the case of
�x=r0 = 3, with about 15PPW, except near the centre of the vortices. Hence grid independency
is achieved with �x=r0 = 4. It is noticeable that Lee and Koo [6] have reported using a
minimum of 25 PPW with a MacCormack predictor–corrector scheme to obtain a comparable
level of accuracy. Therefore, the DRP scheme can provide more than 50% savings in the
spatial resolution compared with lower order schemes.
The e�ect of time step on the solution of the linearized equations is investigated last. The

results obtained by two di�erent time steps are compared with analytical solution in Figure 8.
Both solutions are extracted at the same time using �x=r0 = 3. The solution computed with
the larger time step shows a notable deviation from the analytical solution, but the solution
computed by smaller time step picks up the analytical solution a wavelength away from the
source. Using time steps larger than 0.075, which appears to be the stability limit of the time
integration, gives rise to unstable solutions. The accuracy of the solution is not practically
increased with decreasing time step below 0.01 as the result obtained using this time step
nearly falls on the analytical solution at the far �eld.
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Figure 8. Comparison of the analytical and computed results along x-axis for �=2�=10 and Mr = 0:1
with di�erent time steps using linearized equations.

7. CONCLUSION

An acoustic=viscous splitting technique has been applied to the incompressible Navier–Stokes
equations to obtain an acoustic �eld equation governing the generation and propagation of
sound in low Mach number �ow �elds. Next an optimized high order DRP scheme is utilized
to solve the acoustic �eld equations for the solution of the sound generated by a spinning
vortex pair. The results show that the application of this method provides a good solution even
on relatively coarse grids. Finally, the acoustic �eld equations are linearized and then solved
by high order DRP schemes. It is observed that the error introduced into simulations by this
approximation is even less than the numerical error in simulating non-linear equations. The
prime advantage of this linearization is a substantial simpli�cation of the solution procedure
and consequently notable timesavings. It is observed that non-linear calculations take about
160% more time than the linearized calculations for the same number of iterations. This
is a promising timesaving approach for the simulation of three-dimensional acoustic �elds
generated by low Mach number �ows.

APPENDIX A

The coe�cient and the source term matrices in the cartesian co-ordinates are given by

A=



u � 0

c2=� u 0

0 0 u


 ; B=



v 0 �

0 v 0

c2=� 0 v


 ;
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S =−




@�1
@t
+ u

@�1
@x

+ v
@�1
@y

��
@U
@t
+ ( ��U + u′)

@U
@x

+ ( ��V + v′)
@U
@y

��
@V
@t
+ ( ��U + u′)

@V
@x
+ ( ��V + v′)

@V
@y




where ��=(�1 + �′)=�.
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